3,057 research outputs found

    Two-dimensional Copolymers and Multifractality: Comparing Perturbative Expansions, MC Simulations, and Exact Results

    Full text link
    We analyze the scaling laws for a set of two different species of long flexible polymer chains joined together at one of their extremities (copolymer stars) in space dimension D=2. We use a formerly constructed field-theoretic description and compare our perturbative results for the scaling exponents with recent conjectures for exact conformal scaling dimensions derived by a conformal invariance technique in the context of D=2 quantum gravity. A simple MC simulation brings about reasonable agreement with both approaches. We analyse the remarkable multifractal properties of the spectrum of scaling exponents.Comment: 5 page

    Shape characteristics of the aggregates formed by amphiphilic stars in water: dissipative particle dynamics study

    Full text link
    We study the effect of the molecular architecture of amphiphilic star polymers on the shape of aggregates they form in water. Both solute and solvent are considered at a coarse-grained level by means of dissipative particle dynamics simulations. Four different molecular architectures are considered: the miktoarm star, two different diblock stars and a group of linear diblock copolymers, all of the same composition and molecular weight. Aggregation is started from a closely packed bunch of NaN_{\text a} molecules immersed into water. In most cases, a single aggregate is observed as a result of equilibration, and its shape characteristics are studied depending on the aggregation number NaN_{\text a}. Four types of aggregate shape are observed: spherical, rod-like and disc-like micelle and a spherical vesicle. We estimate "phase boundaries" between these shapes depending on the molecular architecture. Sharp transitions between aspherical micelle and a vesicle are found in most cases. The pretransition region shows large amplitude oscillations of the shape characteristics with the oscillation frequency strongly dependent on the molecular architecture.Comment: 10 pages, 7 figure

    A Simple Particle Action from a Twistor Parametrization of AdS_5

    Full text link
    The SO(4,2) isometries of AdS_5 are realized non-linearly on its horospherical coordinates (x^m,\rho). On the other hand, Penrose twistors have long been known to linearly realize these symmetries on 4-dimensional Minkowski space, the boundary of AdS_5, parametrized by x^m. Here we extend the twistor construction and define a pair of twistors, allowing us to include a radial coordinate in the construction. The linear action of SO(4,2) on the twistors induces the correct isometries of AdS_5. We apply this new construction to the study of the dynamics of a massive particle in AdS_5. We show that in terms of the twistor variables the action takes a simple form of a 1-dimensional gauge theory. Our result might open up the possibility to find a simple worldvolume action also for the string propagating on AdS_5.Comment: 11 pages, LaTe

    Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988

    Get PDF
    Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed

    Entropy-induced separation of star polymers in porous media

    Full text link
    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of ff-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r)rag(r) \sim r^{-a}. Applying the field-theoretical renormalization group approach we show in a double expansion in ϵ=4d\epsilon=4-d and δ=4a\delta=4-a that there is a range of correlation strengths δ\delta for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3d=3 and different values of the correlation parameter aa the corresponding scaling exponents γf\gamma_f that govern entropic effects. We find that γf1\gamma_f-1, the deviation of γf\gamma_f from its mean field value is amplified by the disorder once we increase δ\delta beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are: star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers.Comment: 14 pages, 7 figure

    Statistical analysis of 22 public transport networks in Poland

    Full text link
    Public transport systems in 22 Polish cities have been analyzed. Sizes of these networks range from N=152 to N=2881. Depending on the assumed definition of network topology the degree distribution can follow a power law or can be described by an exponential function. Distributions of paths in all considered networks are given by asymmetric, unimodal functions. Clustering, assortativity and betweenness are studied. All considered networks exhibit small world behavior and are hierarchically organized. A transition between dissortative small networks N=500 is observed.Comment: 11 pages, 17 figures, 2 tables, REVTEX4 forma

    A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus

    Get PDF
    Cell-cell contacts play a vital role in intracellular signaling, although the molecular mechanisms of these signaling pathways are not fully understood. E-cadherin, an important mediator of cell-cell adhesions, has been shown to be cleaved by γ-secretase. This cleavage releases a fragment of E-cadherin, E-cadherin C-terminal fragment 2 (E-cad/CTF2), into the cytosol. Here, we study the fate and function of this fragment. First, we show that coexpression of the cadherin-binding protein, p120 catenin (p120), enhances the nuclear translocation of E-cad/CTF2. By knocking down p120 with short interfering RNA, we also demonstrate that p120 is necessary for the nuclear localization of E-cad/CTF2. Furthermore, p120 enhances and is required for the specific binding of E-cad/CTF2 to DNA. Finally, we show that E-cad/CTF2 can regulate the p120-Kaiso-mediated signaling pathway in the nucleus. These data indicate a novel role for cleaved E-cadherin in the nucleus

    Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond

    Full text link
    We present systematic measurements of longitudinal relaxation rates (1/T11/T_1) of spin polarization in the ground state of the nitrogen-vacancy (NV^-) color center in synthetic diamond as a function of NV^- concentration and magnetic field BB. NV^- centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV^- center concentrations. Values of (1/T11/T_1) were measured for each spot as a function of BB.Comment: 4 pages, 8 figure

    Star copolymers in porous environments: scaling and its manifestations

    Full text link
    We consider star polymers, consisting of two different polymer species, in a solvent subject to quenched correlated structural obstacles. We assume that the disorder is correlated with a power-law decay of the pair correlation function g(x)\sim x^{-a}. Applying the field-theoretical renormalization group approach in d dimensions, we analyze different scenarios of scaling behavior working to first order of a double \epsilon=4-d, \delta=4-a expansion. We discuss the influence of the correlated disorder on the resulting scaling laws and possible manifestations such as diffusion controlled reactions in the vicinity of absorbing traps placed on polymers as well as the effective short-distance interaction between star copolymers.Comment: 13 pages, 3 figure

    Multifractality of Brownian motion near absorbing polymers

    Full text link
    We characterize the multifractal behavior of Brownian motion in the vicinity of an absorbing star polymer. We map the problem to an O(M)-symmetric phi^4-field theory relating higher moments of the Laplacian field of Brownian motion to corresponding composite operators. The resulting spectra of scaling dimensions of these operators display the convexity properties which are necessarily found for multifractal scaling but unusual for power of field operators in field theory. Using a field-theoretic renormalization group approach we obtain the multifractal spectrum for absorbtion at the core of a polymer star as an asymptotic series. We evaluate these series using resummation techniques.Comment: 18 pages, revtex, 6 ps-figure
    corecore